Power applied to a particle varies with time as $P = (4t^3 -5t + 2)\,watt$, where $t$ is in second. Find the change is its $K.E.$ between time $t = 2$ and $t = 4 \,sec.$ ............... $\mathrm{J}$
$212$
$213$
$214$
$215$
A neutron travelling with a velocity $v$ and $K.E.$ $E $ collides perfectly elastically head on with the nucleus of an atom of mass number $A$ at rest. The fraction of total energy retained by neutron is
The force acting on a body moving along $x-$ axis varies with the position of the particle as shown in the figure. The body is in stable equilibrium at
If a spring extends by $x$ on loading then energy stored by the spring is ($T$ is tension in spring, $K$ is spring constant)
A basket and its contents have mass $M$. A monkey of mass $2M$ grabs the other end of the rope and very quickly (almost instantaneously) accelerates by pulling hard on the rope until he is moving with a constant speed of $v_{m/r} = 2ft/s$ measured relative to the rope. The monkey then continues climbing at this constant rate relative to the rope for $3$ seconds. How fast is the basket rising at the end of the $3$ seconds? Neglect the mass of the pulley and the rope. (given : $g = 32ft/s^2$)
A body of mass $2\,kg$ makes an elastic collision with another body at rest and continues to move in the original direction with one fourth of its original speed, The mass of the second body which collides with the first body is ............... $\mathrm{kg}$